quinta-feira, 23 de julho de 2015


NASA’s Kepler Mission Discovers Bigger, Older Cousin to Earth



This artist's concept compares Earth (left) to the new planet, called Kepler-452b,
 which is about 60 percent larger in diameter.
Credits: NASA/JPL-Caltech/T. Pyle



NASA's Kepler mission has confirmed the first near-Earth-size planet in the “habitable zone” around a sun-like star. This discovery and the introduction of 11 other new small habitable zone candidate planets mark another milestone in the journey to finding another “Earth.” 

The newly discovered Kepler-452b is the smallest planet to date discovered orbiting in the habitable zone -- the area around a star where liquid water could pool on the surface of an orbiting planet -- of a G2-type star, like our sun. The confirmation of Kepler-452b brings the total number of confirmed planets to 1,030.

"On the 20th anniversary year of the discovery that proved other suns host planets, the Kepler exoplanet explorer has discovered a planet and star which most closely resemble the Earth and our Sun," said John Grunsfeld, associate administrator of NASA’s Science Mission Directorate at the agency’s headquarters in Washington. “This exciting result brings us one step closer to finding an Earth 2.0."

Kepler-452b is 60 percent larger in diameter than Earth and is considered a super-Earth-size planet. While its mass and composition are not yet determined, previous research suggests that planets the size of Kepler-452b have a good chance of being rocky.

While Kepler-452b is larger than Earth, its 385-day orbit is only 5 percent longer. The planet is 5 percent farther from its parent star Kepler-452 than Earth is from the Sun. Kepler-452 is 6 billion years old, 1.5 billion years older than our sun, has the same temperature, and is 20 percent brighter and has a diameter 10 percent larger.


Of the 1,030 confirmed planets from Kepler, a dozen are less than twice the size of Earth and reside in the habitable zone of their host stars. In this diagram, the sizes of the exoplanets are represented by the size of each sphere. These are arranged by size from left to right, and by the type of star they orbit, from the M stars that are significantly cooler and smaller than the sun, to the K stars that are somewhat cooler and smaller than the sun, to the G stars that include the sun. The sizes of the planets are enlarged by 25 times compared to the stars. The Earth is shown for reference.
Credits: NASA/Ames/JPL-Caltech




“We can think of Kepler-452b as an older, bigger cousin to Earth, providing an opportunity to understand and reflect upon Earth’s evolving environment," said Jon Jenkins, Kepler data analysis lead at NASA's Ames Research Center in Moffett Field, California, who led the team that discovered Kepler-452b. "It’s awe-inspiring to consider that this planet has spent 6 billion years in the habitable zone of its star; longer than Earth. That’s substantial opportunity for life to arise, should all the necessary ingredients and conditions for life exist on this planet.”

To help confirm the finding and better determine the properties of the Kepler-452 system, the team conducted ground-based observations at the University of Texas at Austin's McDonald Observatory, the Fred Lawrence Whipple Observatory on Mt. Hopkins, Arizona, and the W. M. Keck Observatory atop Mauna Kea in Hawaii. These measurements were key for the researchers to confirm the planetary nature of Kepler-452b, to refine the size and brightness of its host star and to better pin down the size of the planet and its orbit.

The Kepler-452 system is located 1,400 light-years away in the constellation Cygnus. The research paper reporting this finding has been accepted for publication in The Astronomical Journal.
In addition to confirming Kepler-452b, the Kepler team has increased the number of new exoplanet candidates by 521 from their analysis of observations conducted from May 2009 to May 2013, raising the number of planet candidates detected by the Kepler mission to 4,696. Candidates require follow-up observations and analysis to verify they are actual planets.

Twelve of the new planet candidates have diameters between one to two times that of Earth, and orbit in their star's habitable zone. Of these, nine orbit stars that are similar to our sun in size and temperature.

“We've been able to fully automate our process of identifying planet candidates, which means we can finally assess every transit signal in the entire Kepler dataset quickly and uniformly,” said Jeff Coughlin, Kepler scientist at the SETI Institute in Mountain View, California, who led the analysis of a new candidate catalog. “This gives astronomers a statistically sound population of planet candidates to accurately determine the number of small, possibly rocky planets like Earth in our Milky Way galaxy.”

These findings, presented in the seventh Kepler Candidate Catalog, will be submitted for publication in the Astrophysical Journal. These findings are derived from data publicly available on the NASA Exoplanet Archive.

Scientists now are producing the last catalog based on the original Kepler mission’s four-year data set. The final analysis will be conducted using sophisticated software that is increasingly sensitive to the tiny telltale signatures of Earth-size planets.

Ames manages the Kepler and K2 missions for NASA’s Science Mission Directorate. NASA's Jet Propulsion Laboratory in Pasadena, California, managed Kepler mission development. Ball 
Aerospace & Technologies Corporation operates the flight system with support from the Laboratory for Atmospheric and Space Physics at the University of Colorado in Boulder.


 Finding Another Earth


A newly discovered exoplanet, Kepler-452b, comes the closest of any found so far to matching our Earth-sun system. This artist’s conception of a planetary lineup shows habitable-zone planets with similarities to Earth: from left, Kepler-22b, Kepler-69c, the just announced Kepler-452b, Kepler-62f and Kepler-186f. Last in line is Earth itself.
Credits: NASA/Ames/JPL-Caltech



The discovery of a super-Earth-sized planet orbiting a sun-like star brings us closer than ever to finding a twin of our own watery world. But NASA’s Kepler space telescope has captured evidence of other potentially habitable planets amid the sea of stars in the Milky Way galaxy.

To take a brief tour of the more prominent contenders, it helps to zero in on the “habitable zone” around their stars. This is the band of congenial temperatures for planetary orbits -- not too close and not too far. Too close and the planet is fried (we’re looking at you, Venus). Too far and it’s in deep freeze. But settle comfortably into the habitable zone, and your planet could have liquid water on its surface -- just right. Goldilocks has never been more relevant. Scientists have, in fact, taken to calling this water-friendly region the “Goldilocks zone.”

The zone can be a wide band or a narrow one, and nearer the star or farther, depending on the star’s size and energy output. For small, red-dwarf stars, habitable zone planets might gather close, like marshmallow-roasting campers around the fire. For gigantic, hot stars, the band must retreat to a safer distance.

About a dozen habitable zone planets in the Earth-size ballpark have been discovered so far -- that is, 10 to 15 planets between one-half and twice the diameter of Earth, depending on how the habitable zone is defined and allowing for uncertainties about some of the planetary sizes.

The new discovery, Kepler-452b, fires the planet hunter’s imagination because it is the most similar to the Earth-sun system found yet: a planet at the right temperature within the habitable zone, and only about one-and-a-half times the diameter of Earth, circling a star very much like our own sun. The planet also has a good chance of being rocky, like Earth, its discoverers say.

Kepler-452b is more similar to Earth than any system previously discovered. And the timing is especially fitting: 2015 marks the 20th anniversary of the first exoplanet confirmed to be in orbit around a typical star.

But several other exoplanet discoveries came nearly as close in their similarity to Earth.
Before this, the planet Kepler-186f held the “most similar” distinction (they get the common moniker, “Kepler,” because they were discovered with the Kepler space telescope). About 500 light-years from Earth, Kepler-186f is no more than 10 percent larger than Earth, and sails through its star’s habitable zone, making its surface potentially watery.

But its 130-day orbit carries it around a red-dwarf star that is much cooler than our sun and only half its size. Thus, the planet is really more like an “Earth cousin,” says Thomas Barclay of the Bay Area Environmental Research Institute at NASA’s Ames Research Center, Moffett Field, California, a co-author of the paper announcing the discovery in April 2014.


This artist's concept depicts one possible appearance of the planet Kepler-452b, the first near-Earth-size world to be found in the habitable zone of star that is similar to our sun.
Credits: NASA/JPL-Caltech/T. Pyle

Kepler-186f gets about one-third the energy from its star that Earth gets from our sun. And that puts it just at the outside edge of the habitable zone. Scientists say that if you were standing on the planet at noon, the light would look about as bright as it does on Earth an hour before sunset.

That doesn’t mean the planet is bereft of life, although it doesn’t mean life exists there, either.
Before Kepler-186f, Kepler-62f was the exoplanet known to be most similar to Earth. Like the new discovery, Kepler-62f is a “super Earth,” about 40 percent larger than our home planet. But, like Kepler-186f, its 267-day orbit also carries it around a star that is cooler and smaller than the sun, some 1,200 light-years away in the constellation Lyra. Still, Kepler-62f does reside in the habitable zone.

Kepler-62f’s discovery was announced in April 2013, about the same time as Kepler-69c, another super Earth -- though one that is 70 percent larger than our home planet. That’s the bad news; astronomers are uncertain about the planet’s composition, or just when a “super Earth” becomes so large that it diminishes the chance of finding life on its surface. That also moves it farther than its competitors from the realm of a potential Earth twin. The good news is that Kepler-69c lies in its sun’s habitable zone, with a 242-day orbit reminiscent of our charbroiled sister planet, Venus. Its star is also similar to ours in size with about 80 percent of the sun’s luminosity. Its planetary system is about 2,700 light-years away in the constellation Cygnus.

Kepler-22b also was hailed in its day as the most like Earth. It was the first of the Kepler planets to be found within the habitable zone, and it orbits a star much like our sun. But Kepler-22b is a sumo wrestler among super Earths, about 2.4 times Earth’s size. And no one knows if it is rocky, gaseous or liquid. The planet was detected almost immediately after Kepler began making observations in 2009, and was confirmed in 2011. This planet, which could have a cloudy atmosphere, is 600 light-years away, with a 290-day orbit not unlike Earth’s.

Not all the planets jostling to be most like Earth were discovered using Kepler. A super Earth known as Gliese 667Cc also came to light in 2011, discovered by astronomers combing through data from the European Southern Observatory’s 3.6-meter telescope in Chile. The planet, only 22 light-years away, has a mass at least 4.5 times that of Earth. It orbits a red dwarf in the habitable zone, though closely enough -- with a mere 28-day orbit -- to make the planet subject to intense flares that could erupt periodically from the star’s surface. Still, its sun is smaller and cooler than ours, and Gliese 667Cc’s orbital distance means it probably receives around 90 percent of the energy we get from the sun. That’s a point in favor of life, if the planet’s atmosphere is something like ours. The planet’s true size and density remain unknown, however, which means it could still turn out to be a gas planet, hostile to life as we know it. And powerful magnetic fluxes also could mean periodic drop-offs in the amount of energy reaching the planet, by as much as 40 percent. These drop-offs could last for months, according to scientists at the University of Oslo’s Institute of Theoretical Astrophysics in Norway.

Deduct two points.

Too big, too uncertain, or circling the wrong kind of star: Shuffle through the catalog of habitable zone planets, and the closest we can come to Earth -- at least so far -- appears to be the new kid on the interstellar block, Kepler-452b.

NASA's Ames Research Center in Moffett Field, California, manages the Kepler and K2 missions for NASA's Science Mission Directorate. NASA's Jet Propulsion Laboratory in Pasadena, California, managed Kepler mission development. Ball Aerospace & Technologies Corp. operates the flight system with support from the Laboratory for Atmospheric and Space Physics at the University of Colorado in Boulder.

JPL is managed by The California Institute of Technology for NASA.









More information about NASA's planet-hunting efforts is online at:
http://planetquest.jpl.nasa.gov

A related news release about Kepler's latest planetary find is online at: http://www.nasa.gov/press-release/nasa-kepler-mission-discovers-bigger-older-cousin-to-earth
 
A related feature story about other potentially habitable planets is online at: http://www.nasa.gov/jpl/finding-another-earth